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The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids.
Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief
account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can
shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving
superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might
cause drag in a superfluid moving at any speed.
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1. Introduction

Superfluidity has been in the laboratory with us since
1938 (see [1] for a history of the discovery of
superfluidity), and has proven an exceptionally meaty
topic of research. Its strange behaviour can be seen as
the manifestation of quantum mechanics on a large
scale (rather than the usual atomic and subatomic
levels), representing a unique gateway into the quan-
tum world. This prospect has been exciting enough to
stir the emotions of many great physicists – Landau,
Feynman, and Onsager are just a few of those who
have been drawn to the subject.

Over the years and through the various avenues of
research, superfluids have been found to exhibit many
fascinating features (see [2] for a good overview of the
subject, or [3–5] for a more detailed discussion).
Among these are persistent currents (which will be
discussed later), quantised vortices,1 seemingly infinite
thermal conductivity, the fountain effect, and the
phenomenon of second sound.2 One particularly
curious feature of superfluidity is its ability to flow
without apparent energy dissipation if its speed is
sufficiently low.3 It was this striking feature that
inspired the term superfluid.

Picture, for instance, a submarine in a flowing river
of a normal fluid, such as water. It would experience
some drag from the rushing water around it and, if it
weren’t anchored somehow or fighting the flow with a
motor, would be pushed downstream. However, if the
river were made up of superfluid and the flow were
sufficiently slow, experimental observations to date of

superfluidity suggest that the submarine would not feel
any drag even though fluid is moving past it, and
would therefore not need to work against the current
to stay in the same place (see Figure 1).

It remains the orthodox view that superfluid flows
can be dissipationless below a certain critical velocity.
Although this behaviour is counterintuitive, it rests on
a theoretical foundation that is the result of careful
development, and is supported by widespread experi-
mental evidence. And yet, even in this seemingly
resolved aspect of superfluidity one may still find a few
surprises and questions begging answers. In this article,
we will revisit the issue of whether superfluid flow
indeed can be dissipationless at slow speeds, beginning
with a glimpse at the history behind the orthodox view.
We will then look at some new theoretical approaches
made possible by recent developments in ultracold
physics. We will briefly study the mean-field approach,
which corroborates the orthodox view. We will also
look at a recently proposed speculative theory that
argues that quantum fluctuations, typically considered
to have a negligible effect, could play a fundamental
role in this problem. We will consider these theoretical
approaches in the context of slow-flowing superfluids,
i.e. superfluids in the regime where it is widely believed
that dissipationless flow occurs. The question we will
ask is, does an object immersed in and moving slowly
relative to a superfluid experience a drag or not?

The next section outlines Landau’s view of super-
fluid behaviour; Section 3 describes Bose–Einstein
condensates, a new medium that will allow more exact
probing of superfluid properties; Section 4 covers the
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mean-field approach and the superfluid behaviour it
predicts; Section 5 presents the effect of quantum
fluctuations in a superflow; and Section 6 discusses the
issues raised in the paper.

2. Landau’s approach – constructing a theory of

superfluidity

Following the initial observation of superfluid helium,
Landau reasoned that there must be a critical value of
the bulk fluid flow velocity below which a superfluid
would flow without dissipating energy [11]. In the early
days of superfluidity, superfluid helium was ‘the’
example of a (Bose) superfluid and, because of the
strongly interacting nature of superfluid helium, it was
not possible to calculate much from microscopic
considerations (such as atomic interactions) using
analytical techniques. Landau’s argument was there-
fore necessarily restricted to a phenomenological
approach.

Landau made the assumption that for the flow’s
energy to dissipate, excitations had to be present to
carry away the energy. However, by definition, at
T ¼ 0 the superfluid in itself does not contain any
excitations. Therefore, excitations must be created in
order for there to be dissipation. Furthermore, the flow
would have to have sufficient momentum to be able to
produce excitations. Because of the nature of the
dispersion relation, the implication is that in order for
the flow to dissipate energy, the flow would have to be
moving above a certain critical velocity. Based on this
argument, Landau was able to determine from the
dispersion relation an estimate of the value of that

critical velocity for superfluid helium. In fact, this
notion of dissipationless flow and a non-zero critical
velocity has become so closely associated with super-
fluids that this has become a popular definition of
superfluidity and the one most often repeated in
standard statistical mechanics textbooks.

It is important to note that Landau’s predicted
critical velocity does not agree with all experimental
observations; in some superfluid helium flow experi-
ments the apparent critical velocity is around an order
of magnitude lower than the predicted value. A
number of explanations, such as the formation of a
vortex ring [12] and the expansion of remnant vortex
lines [13], have been proposed to explain this dis-
crepancy, but questions persist (see for example
footnote 2 in [14]). I mention this supercritical
behaviour only in passing since, in this article, we
will be focusing on superfluids travelling at speeds low
enough as to be safely below any predicted or
experimentally observed critical velocity.

3. Gaseous Bose–Einstein condensates – an ideal test

bed for superfluidity

For decades physicists studying superfluidity were
obliged to tangle with strongly interacting liquid
helium for answers to fundamental questions. No
longer. Relatively recent advances in ultracold physics
have delivered to us dilute Bose–Einstein condensates,
or BECs (see Box 1), in trapped atomic-gas form,
which are a much more convenient medium of study
than superfluid helium.

What does Bose–Einstein condensation have to do
with superfluidity? The relationship, while intimate,
remains to be clearly articulated. Initially, Landau did
not believe that quantum statistics, and hence Bose–
Einstein condensation, had anything to do with
superfluidity. However, Bogoliubov showed two things
that together at least made BECs consistent with
superfluidity [17]. First, he demonstrated from first
principles that a dilute, weakly interacting gas could
undergo Bose–Einstein condensation, contradicting
the common view at the time that only a noninteract-
ing gas could Bose condense. Second, he showed that
the dispersion relation of a gas with such interactions,
unlike that of a noninteracting gas, had a non-zero
critical velocity consistent with superfluidity. In a
nutshell, the relationship is that BECs typically seem to
exhibit superfluid behaviour (except in the pathological
case of a noninteracting gas). Having said that, the
superfluid properties in the trapped atomic gases are
not as apparent as they are in superfluid helium.4 Over
the last decade, however, many experiments have
succeeded in clearly showing the superfluid character-
istics of the trapped atomic gases (the existence of

Figure 1. Illustration of the difference between normal fluid
flow and superfluid flow.
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scissor modes [18], quantised vortices [19], and reduced
drag on impurities [8–10], etc.).

For the purposes of the present discussion, how-
ever, the most important difference between the dilute
BECs in trapped atomic gases and superfluid helium,
the original bosonic superfluid discovered in 1938, is
that of density and therefore, the importance of the
interaction between particles. Superfluid helium is more
dense, so the interactions between the atoms are a
significant factor in determining the fluid’s behaviour
and cannot be ignored. The new BECs to be found in
the trapped atomic gases, on the other hand, are dilute
(100,000 times more dilute than air); the average
distance between atoms is much greater and so the
interaction is far less important. In this dilute limit,
Bogoliubov (as well as Lee, Huang and Yang [20] and
others) showed that one can derive the system’s
macroscopic behaviour from its microscopic
properties.

In many ways, experimentalists are also able to do
much more with dilute, weakly interacting BECs than
with the strongly interacting superfluid helium. Not
only can scientists change the geometry of the trap for
the dilute BEC almost at will, but they can do amazing
things like tune the atomic interactions (even change

BOX 1 What is Bose–Einstein condensation?

Briefly, let’s recall that all known particles have
an internal angular momentum, or spin, that can
only take on certain values. Those that take on
values of even integer times �/2 are referred to as
bosons and those that take on odd integer times
�/2 values are referred to as fermions. Photons
and helium-4 atoms are examples of bosons
(although made up of fermions, the internal
structure is irrelevant for low temperature fluids);
electrons, protons and neutrons are examples of
fermions.

In the 1920s, Bose defined certain rules for
determining the statistical distribution of
photons given that photons are indistinguishable
in the quantum sense. We now call these rules
‘Bose statistics’. Einstein guessed that these same
rules might apply to atoms. He worked out a
theory for how atoms would behave in a gas
assuming that Bose statistics applied. (Note that
Einstein’s theory holds only for bosons; fer-
mions, which do not obey Bose statistics, had not
yet been identified at the time.)

It turns out that the behaviour for bosons and
fermions do not differ significantly, except at
very low temperatures where quantum effects
become important. At sufficiently high tempera-
tures, atoms would populate many different
levels regardless of whether they are bosons or
fermions. However, all things being equal,
bosons prefer to squeeze in together in the same
quantum state and, at low enough temperatures,
nothing prevents them from doing so. Thus, if a
substance composed of bosons becomes cold
enough, a significant fraction of the bosons
would suddenly fall into the very lowest energy
level; the substance undergoes a phase transition
into a Bose–Einstein condensate (BEC). By
contrast, fermions are – thankfully – antisocial.
In fact, the Pauli exclusion principle dictates that
there can be only one fermion per state, and this
is what keeps ordinary matter stable.

In one of the great breakthroughs in physics in
the last few decades, this form of matter was
unambiguously and independently witnessed in
its (almost) pure form by Cornell, Wieman, and
Ketterle in 1995, 70 years after Einstein predicted
it (see Figure 2). They succeeded in cooling
trapped atomic gases to temperatures in the
region of 1079 degrees above absolute zero,
which is colder than anything in the known
universe, and thereby achieved Bose–Einstein
condensation. The remarkable achievement of
this novel form of matter, which had been

thought of as the holy grail of atomic physics
since the late 1970s, attracted a Nobel prize
shortly after its discovery and has launched a new
and rapidly expanding discipline devoted to the
study of its properties and exploration of its
potential applications (see for example [3,15,16].

Figure 2. 3D density plot of Bose–Einstein
condensate formation in ultracold trapped Rb atoms
at different temperatures (400, 200, 50 nK from left
to right). The peak of the density distribution,
which consists of almost stationary atoms acting in
lockstep, is the Bose–Einstein condensate; the flatter
part of the density distribution represents the thermal
atoms. (Figure courtesy of the Physics Department,
University of Colorado.)
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their sign!) which, at present, is only a dream in the
dense world of superfluid helium.

The theoretical and experimental advantages of
trapped atomic gases over liquid helium make them an
excellent medium through which to probe super-
fluidity, giving new hope of resolving some of the
lingering paradoxes of superfluidity, including the
unintuitive behaviour of frictionless flow in super-
fluids. The remainder of this article will focus on these
trapped atomic gas systems; helium systems will be
revisited briefly in the discussion.

4. Mean field calculation

From a theoretical perspective, the moving superfluid
is completely characterised by the full bosonic quan-
tum field operator ĉðrÞ. ( ĉðrÞ is quantum in the sense
that it and ĉyðrÞ are noncommuting operators.) With
that, and since we know that force is determined by the
gradient of the external potential, we can immediately
write the exact expression for the drag on an
object immersed in the flow in second quantised
notation as

F ¼ �hĉyðrÞ½rFðrÞ�ĉðrÞiT¼0; ð1Þ

where for convenience we have represented the object
by an external field F(r) and we assume that the
superfluid is at T ¼ 0. It is here that we encounter the
stumbling block – generally speaking it is not feasible
to solve ĉðrÞ exactly. This is where the diluteness of the
new BECs comes in. It means that the interactions are
far less important than they are in a dense
medium, allowing us to make a justifiable, controlled
approximation of ĉðrÞ. In this section we will look at
one approximation, known as the mean-field approx-
imation, where one assumes that each individual atom
experiences the average of the interactions of all the
other atoms.

To leading order in a zero-temperature weakly
interacting Bose gas, we can approximate ĉðrÞ as a
classical field C(0)(r) representing the condensate
wave function. This is roughly equivalent to saying
that adding or subtracting a few atoms from this
state will not change the properties of the system,
akin to treating light classically when many photons
are present. This is a good approximation in our
case as one can self-consistently show that a macro-
scopic number of atoms reside in the condensate
field.

Being a classical field, C(0)(r) obeys the well-known
nonlinear Schrödinger equation, better known as the
Gross–Pitaevskii equation (GPE) in the superfluid
context. Assuming a steady state, for a stationary

object in a moving superfluid flow, the GPE can be
written as

ðT̂þ FðrÞ � mÞCð0ÞðrÞ þ gjCð0ÞðrÞj2Cð0ÞðrÞ ¼ 0; ð2Þ

where

T̂ � � �h2r2

2m
þ i�hvs

@

@x
þ 1

2
mv2s

and g ¼ 4 p �h2a/2m, m being the atoms’ mass, vs being
the superfluid velocity relative to the object, and a
being the scattering length.

The force on the object can be expressed as

FGPE ¼ �
Z

d3rjĈð0ÞðrÞj2rFðrÞ; ð3Þ

which means that for an object with a potential
symmetric about x ¼ 0, a density asymmetry in
jC(0)j2 would lead to a drag.

Theorists working in this mean-field approximation
have shown that a superfluid flowing slowly enough
past an object with just such a symmetric potential
would not develop a density asymmetry, so there
would be no drag on the object [21–23]. It is interesting
to note that the GPE can be mapped into a classical
ideal fluid (differing only by an additional quantum
pressure term), and that lack of drag at subcritical
speeds has been a known feature of these classical
fluids since the eighteenth century, i.e. d’Alembert’s
paradox.

So, analysed in the mean-field approximation, it
appears that there can be flow without dissipation if
the fluid travels below a certain velocity, much as
Landau had argued. However, from the mean-field
studies done in various geometries it would appear that
for the flow to be dissipationless, it is the maximum
local fluid velocity that must be less than the speed of
sound rather than the bulk fluid velocity of Landau’s
argument. Above the geometry dependent critical
velocity, nonlinear effects such as vortex shedding
and soliton shedding cause the superfluid flow to break
down. The bottom line from the mean-field approach
is that there is a nontrivial critical (bulk fluid) velocity
below which the object would not feel any drag, i.e. the
flow would not dissipate energy.

5. Effect of quantum fluctuations

In the previous section we showed how ĉðrÞ could be
tamed by a leading order approximation. But what if we
let ĉðrÞ retain a little bit more of its character? Around
the classical solution discussed in the last section there
exist fluctuations, even at zero temperature, because of
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the quantum zero point motion. Therefore, in this
section, we will keep not only the leading order term (the
classical-field picture introduced in the previous section)
but also the next-order term in the expansion of ĉðrÞ.
The approximation becomes

ĉðrÞ � Cð1ÞðrÞ þ f̂ðrÞ; ð4Þ

where f̂ðrÞ is the quantum fluctuating operator and
C(1)(r) is the condensate field modified by the quantum
fluctuations. Since the condensate is dilute and weakly
interacting, we will assume f̂ðrÞ to be small. One can
show self-consistently that corrections due to the
quantum fluctuations would be on the order of the
diluteness parameter, which can be written as (n0 a

3)1/2,
where n0 is the number density [24].

This extra term does make calculations a little more
complicated and, yes, one of the great benefits of trapped
gaseous condensates was the idea that one could ignore
these higher order effects and still be able to describe
experiments with a high degree of precision – theorists
could argue that their effects were insignificant relative
to those of themean field because of the diluteness of the
gas. Furthermore, even though the effects of quantum
fluctuations have measurable effects in various experi-
mental systems (see for example [25–27]), these experi-
mental consequences have typically been a small
correction to the dominant mean-field effects. So why
bother taking into account quantum fluctuations in
this case? Since the mean field makes no contribution
to drag in the object/superfluid system considered in
this article (as discussed in the previous section), any
effect from quantum fluctuations would dominate and
therefore merits a closer look.

As a brief aside, let us look at how quantum
fluctuations can give rise to a force in a superfluid
system. Casimir, in 1948, argued that quantum
fluctuations in an electromagnetic (EM) vacuum would
give rise to a force (see Box 2 for details). One can
make an analogous argument about fluctuations in
a zero-temperature superfluid (for similar vacuum/
superfluid analogies see [30]). A condensate at zero
temperature can be thought of as a vacuum in that it is
devoid of excitations and, like Casimir’s EM vacuum,
one must still take into account quantum fluctuations,
as represented by f̂ðrÞ, that exist in a zero temperature
superfluid. To adapt Casimir’s thought experiment to
our superfluid situation, instead of introducing con-
ducting plates into our vacuum as Casimir did, let us
imagine immersing two parallel, thin, hard planar
walls. In the mean-field approximation there would be
no force because the pressure of the fluid would be
equal between and outside of the parallel walls, just as
there would not be a Casimir force in an EM vacuum
according to classical argument. However, if one

includes quantum fluctuations, an attractive force
does arise between these two walls, a force that is
directly analogous to the Casimir force in an EM
vacuum [31,32]. (Note that this Casimir force from the
excitation vacuum in condensates is very much a
quantum, not a thermal, effect due to the quantum

BOX 2 The Casimir force

In a classical mechanics analysis, two uncharged
conducting plates placed parallel to each other in
a perfect electromagnetic (EM) vacuum would
not result in any force. However, Casimir (with a
conceptual push from Bohr) showed that in a
quantum mechanical conception a small attrac-
tive force would arise between these plates as a
result of the vacuum, i.e. from nothing. Although
in a vacuum no real photons are present, virtual
photons still exist due to the quantum nature of
the EM field. The resulting field is a super-
position of many modes, and the parallel plates
in the vacuum effectively place boundary condi-
tions on which of these modes are allowed
between the plates (see Figure 3). Waves with
nodes that coincide with the surface of both
plates form standing waves (at least for perfect
conductors); all other waves are suppressed. This
effectively filters out many modes from the space
between the plates. One can show that the energy
of the system depends on the separation of the
plates and thus a force (which is attractive) exists
between the plates. This force has recently been
conclusively observed and its study has since
developed into a booming area of research
[28,29].

Figure 3. Schematic showing the boundary effect of
conducting plates on the vacuum modes, which is
responsible for the Casimir force.
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fluctuation operator.) To leading order, the force
expression in the EM case is identical to that in the
condensate-vacuum case, except for the speed of sound
replacing the speed of light and a factor of two arising
from polarisation of the EM waves. This is because the
dispersion relations for photons and phonons are
identical (at least for low momenta, which dominate
the force).

How does this apply to the problem of an object in
a moving superfluid? First, it is important to note that
the direct Casimir analogy can only go so far. We do
not expect there to be a drag on a single object moving
at constant velocity in an electromagnetic vacuum.
This is because such a force would imply a preferred
reference frame and an ether, violating the funda-
mental principle that all non-accelerating frames in an
EM vacuum must be equivalent. By contrast, a
preferred non-accelerating reference frame can be
identified in the object/superfluid system – the lab
frame – without breaking any fundamental principles
of physics. This makes it possible to have drag on an
object in a moving superfluid although, of course, this
does not prove that one exists.

Given ĉðrÞ � Cð1ÞðrÞ þ f̂ðrÞ, the drag on an object
immersed in a moving superfluid becomes

F ¼ FGGPE þ Ffluc

¼ �
Z

d3rðjCð1ÞðrÞj2 þ hf̂yðrÞf̂ðrÞiT¼0ÞrFðrÞ; ð5Þ

where the first term on the right-hand side, FGGPE,
represents the force contribution from the generalised
GPE [33,34], which describes the condensate field
modified by quantum fluctuations; the second term
represents the force contribution from quantum
fluctuations, Ffluc. (Note that FGPE does not feature
here since it is zero at subcritical velocities, as
described in the previous section.) To calculate F, we
must first determine f̂ðrÞ and then C(1)(r), using f̂ðrÞ in
the generalised GPE (GGPE).

To make a long story short, f̂ðrÞ can be calculated
by performing a canonical transformation from a
system that describes weakly interacting particles to a
system describing noninteracting quasiparticles. This
effectively diagonalises the system, making it easier to
compute the system’s properties (see [24] for details).
We can write f̂ðrÞ in terms of the normal modes of
the system, i.e. the quasiparticle operators âk and âyk

5

such that

f̂ðrÞ ¼
X
k0

ukðrÞâk � v�kðrÞâ
y
k

� �
; ð6Þ

where, in order for the transformation mentioned
above to hold, uk(r) and vk(r) must satisfy the
Bogoliubov–de Gennes (BdG) equations, which

govern the behaviour of quantum fluctuations in the
dilute limit. The BdG equations, which determine the
behaviour of these normal modes, are

L̂ukðrÞ � gðCð0ÞÞ2vkðrÞ ¼ EkukðrÞ; ð7Þ

L̂vkðrÞ � gðCð0Þ�Þ2ukðrÞ ¼ �EkvkðrÞ; ð8Þ

where L̂ ¼ T̂þ FðrÞ � mþ 2gjCð0Þj2, Ek is the eigenva-
lue for momentum state k, and * indicates the complex
conjugate. This describes an effective scattering pro-
blem which must be solved in order to determine uk(r)
and vk(r) and thus the force in a superfluid at
subcritical speeds.

With these, we can return to Equation (5) and find
that it yields a non-zero drag at all velocities [34–36].
[36] goes beyond the perturbative calculations of
[32,35] in a quasi-ld geometry; it also discusses the
regimes where the drag force is dominated by quantum
fluctuations and where it is dominated by thermal
fluctuations. Unsurprisingly given its origination from
the quantum fluctuations term, the calculated force is
proportional to the small diluteness parameter, (n0
a3)1/2.6

This does not square with either the orthodox or
the mean-field view, both of which determine that there
is dissipationless flow below a certain (non-zero)
critical velocity. In the approximation that includes
the fluctuation term, there is drag at any velocity, even
at very low velocities where there is no mean-field
contribution to the force. If quantum fluctuations in a
superflow do indeed give rise to a force on an
immersed object then, in the regime below the critical
velocity, this effect would be the dominant one.

6. Bringing theory and experiment together

The mean-field analysis finds that superfluids moving
slowly enough can flow without dissipation while
findings using a closer approximation of superfluids
that takes into account quantum fluctuations point to
there being dissipation at all velocities. One would
expect that greater precision in the approximation
would lead to more correct conclusions. However,
experimental verification, the great arbiter, has yet to
come down definitively on either side.

Experiments on superfluid helium [6,7] as well as on
dilute BECs [8,9] have observed a sharp drop in drag
below a certain relative velocity of a superfluid to the
object immersed in it. This is consistent with the idea
that there is dissipationless flow below a certain
velocity. However, these experimental observations
cannot be said to be inconsistent with the notion of
drag from quantum fluctuations. Demonstrating no
quantum fluctuation-induced drag at low velocities

458 D.C. Roberts

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
s
 
A
l
a
m
o
s
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
1
6
:
3
4
 
8
 
M
a
r
c
h
 
2
0
1
0



would require not only that a drop in dissipation is
observed, but that there is no drag as large as that
predicted to be due to quantum fluctuations. For dilute
BECs, the predicted force from quantum fluctuations
is very small, and dilute BEC experiments have yet to
achieve the precision needed to rule out drag on this
order of magnitude.

Newly developed techniques in ultracold atomic
gas experiments are making it possible to improve
precision. For example, containing the superfluid in a
toroidal form rather than in a harmonic trap may
reduce inhomogeneities in the superfluid density,
improving sensitivity to drag effects from an immersed
object moving relative to the superfluid. The toroidal
set-up is, conveniently, already an experimental reality.
It is a feature of persistent current experiments, which
have been conducted on superfluid helium decades ago
[37] but have only recently been achieved using dilute
BECs [38,39]. In these experiments the superfluid is set
flowing around the principal axis of the toroidal,
rough-walled container or trap and, without further
external intervention, the superfluid flows essentially
forever without noticeable dissipation. Certainly, the
fact that the flow maintains its speed indefinitely is an
indisputable example of drag-free flow, i.e. no drag
from quantum fluctuations?

Well, perhaps it is possible to reconcile drag at all
velocities with the observation of persistent currents. One
can speculate with the phenomenological argument
below, the corollary of which should be verifiable
through simulations (currently in progress) as well as
through new, more sensitive experimental techniques.

The calculation outlined in Section 5 treats the system
as if it were infinitely extended – quantum fluctuations
that deflect off the object in such a system would travel
away and not return. This theoretical infinitely extended
situation can be likened to that of wave drag on a boat
moving on an ocean, where waves that hit the boat are
reflected once and travel away unhindered. Persistent
current experiments, on the other hand, are conducted in
a finite geometry and are therefore subject to finite
geometry effects. For simplicity, let us now treat all the
friction due to the roughness of the container walls as if it
were embodied in one single object immersed in the
toroidal flow. (Surface roughness will be dealt with more
directly below.) In this way, we can see that the
experimental situation is more akin to a boat moving
in a circular channel where the scattered waves are
eventually reflected back towards the boat, fundamen-
tally changing the nature of the problem from that
treated theoretically.

In finite-geometry experiments, therefore, the fluc-
tuations scattered once off the object in the superfluid
eventually re-encounter the object. This should happen
on some geometry dependent timescale, which would be

on the order of the characteristic length of the system
over the speed of sound. (Note that we are only
concerned with scattering fluctuations whose interaction
with the object has a component along the flow axis; the
force from fluctuations that scatter perpendicular to the
direction of bulk fluid motion should average out to
zero.) One can surmise that below this timescale, i.e.
before this system recognises it is a finite system, the
object would act as if it were in an infinitely extended
medium and there would be drag due to the quantum
fluctuations; above this timescale the drag would die
away as the rescattered quantum fluctuations become
important. This predicted observable provides one way
to test for drag from quantum fluctuations in superfluids
moving at subcritical speeds.7 If the argument above is
borne out, then the phenomenon of persistent currents
can be understood as a finite-size effect, i.e. the bigger the
toroidal system, the longer it would take for persistent
currents to settle in.

In the approximation discussed in Section 5 of this
article, Equation (4), quasiparticles (which diagonalise
the Hamiltonian) do not interact,8 meaning that the
system including quantum fluctuations are unable to
relax to any thermal equilibrium. However, as the time
increases, quasiparticle interactions play a more promi-
nent role in the system and higher order terms (the
Beliaev and Landau terms [40] truncated in the approxi-
mation described in Section 5, i.e. Equation (4)) become
significant. These interactions permit the scattered waves
to reach a local thermal equilibrium, generating some
normal fluid (fluid with the viscous properties we are
familiar with in our regular non-zero temperature
world). The presence of superfluid and normal fluid
means that the system behaves as a two-fluid system as
discussed by Landau [11]. The scattered fluctuations
should in principle be detectable as normal gas,
providing a second way to test for drag due to quantum
fluctuations in the subcritical regime.

In real superfluid flow experiments, whether using
helium or dilute BECs, the primary source of surface
roughness is typically the container walls rather than
an immersed object. So let us now return to thinking of
the persistent current experimental set-up with rough
container walls and no immersed object. As one can
imagine, the problem of quantum fluctuations scatter-
ing off rough container walls is far more complex than
that of scattering off one localised object. Nevertheless,
with the ‘reversible’ conversion between superfluid and
normal fluid just described, coupled with a healthy
dose of speculation (in keeping with the spirit of this
article), one can theorise a hydrodynamic boundary
condition for superfluid flowing along a rough wall.

If one ventures that the equilibrium temperature is
proportional to the kinetic energy of the superfluid
component, v2s , weighted by the roughness of the walls,
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and that vs is more or less constant, one can
hypothesise that the boundary condition is of the form

n � ðjn � jsÞ ¼ aðTb � TÞ þ bv2s ; ð9Þ

where n is the average unit vector normal to the rough
surface, jn is the mass flux for the normal fluid compo-
nent and js that for the superfluid component, T is the
local fluid temperature, Tb is the boundary tempera-
ture, and a and b are parameters dependent on the
roughness of the surface (for more details see [14]).
According to this boundary condition, a superfluid
moving along a rough boundary will necessarily be at a
higher temperature than the boundary due to the
scattering of quantum fluctuations. This should, in
principle, be detectable with current experimental
technology. For instance, in immersed torsional
oscillator experiments [41], more normal fluid will be
carried by the oscillating discs with increasing angular
velocity, creating a unique nonlinear signal to detect
the presence of normal fluid.

7. Conclusion

I hope to have given you a little taste of what is super
about superfluids. I also hope that you come away
persuaded that, although it has been around for a long
time, certain aspects of superfluidity – such as low-
speed flow behaviour – might not yet have given up all
their secrets. It is not yet clear that the slow-moving
superfluid does not push gently on an object in its flow
(see Figure 4).

However, recent experimental breakthroughs in
dilute BECs give us new hope of resolving some of
these longstanding issues, making now a particularly
exciting time to work on superfluids.
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Notes

1. Superfluids don’t spin as stirred-up water would in a
cylindrical container. Instead, they form regularly spaced
vortices in the superfluid, with axes parallel to what
would have been the axis of rotation if we were dealing
with a normal fluid. These vortices are quantised in terms
of � which shows the direct connection between the
superfluid’s macroscopic behaviour and the underlying
subatomic quantum mechanics.

2. In addition to normal sound waves, which are pressure
waves, superfluids can support temperature waves,
known as second sound.

3. The absence of friction on objects moving in superfluids
has been the subject of a number of experiments in both
liquid helium [6,7] and dilute condensates [8–10].

4. Bycontrast, the superfluidpropertiesof liquidheliumbelow
the lambda temperature were very prominent but the
presence of Bose–Einstein condensation in superfluid
helium was not observed until much later. In fact, it was
only in the 1980s that scientistswerefinally able to confirm–
through neutron scattering experiments and surface
absorption that – about 10% of the atoms in zero-
temperature liquid helium were in a Bose–Einstein con-
densed state.

5. As âk and âyk are, respectively, the annihilation and
creation quasiparticle operators, the quasiparticle
vacuum at T ¼ 0 means that the term hf̂yðrÞf̂ðrÞi from
Equation (5) reduces to

P
k jvkðrÞj

2.

6. In superfluid helium, (n0 a3)1/2*1, much larger than in
dilute BECs. Were the above force calculation to hold,
one would expect the drag to be greater in the superfluid
helium system. However, the Bogoliubov theory used to
derive the force calculation is only valid in the regime of
small (n0 a3)1/2 (the regime that is the focus of this
article). Therefore, the size of the drag, if any, in a
superfluid helium system remains unresolved.

7. It is unsurprising that the above-mentioned timescale of
initial dissipation has not yet been observed since the
speed of sound of the liquid helium used in previous
persistent current experiments is very large compared
to the spatial scales of the system. At 50 m s71, the
system realises its finite boundaries very quickly. How-
ever, in ultracold gas experiments the speed of sound is
much slower (*0.01 m s71), which should make such a
timescale easier to observe.

8. Lee, Huang, and Yang’s celebrated correction [20] to the
ground state energy degenerate Bose gases occurs at this
order.
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[18] O. Maragò, G. Hechenblaikner, E. Hodby, and C. Foot,
Dependence of damping and frequency shifts of the
scissors mode of a trapped Bose–Einstein condensate,
Phys. Rev. Lett. 86 (2001), pp. 3938–3941.

[19] K.W. Madison, F. Chevy, W. Wohlleben, and J.
Dalibard, Vortex formation in a stirred Bose–Einstein
condensate, Phys. Rev. Lett 84 (2000), pp. 806–809.

[20] T.D. Lee, K. Huang, and C.N. Yang, Eigenvalues and
eigenfunctions of a Bose system of hard spheres and its
low-temperature properties, Phys. Rev. 106 (1957), pp.
1135–1145.

[21] T. Winiecki, J.F. McCann, and C.S. Adams, Pressure
drag in linear and nonlinear quantum fluids, Phys. Rev.
Lett. 82 (1999), pp. 5186–5189.

[22] T. Frisch, Y. Pomeau, and S. Rica, Transition to
dissipation in a model of superflow, Phys. Rev. Lett. 69
(1992), pp. 1644–1647.

[23] V. Hakim, Nonlinear Schrödinger flow past an obstacle in
one dimension, Phys. Rev. E 55 (1997), pp. 2835–2845.

[24] A.L. Fetter, Nonuniform states of an imperfect ose gas,
Ann. Phys. (NY) 70 (1972), pp. 67–101; Bose–Einstein
Condensation in Atomic Gases Enrico Fermi, in Proceed-
ings of the International School of Physics, M. Inguscio,
et al., eds., IOS, Amsterdam, 1999.

[25] L. Pitaevskii and S. Stringari, Elementary excitations in
trapped Bose–Einstein condensed gases beyond the mean-
field approximation, Phys. Rev. Lett. 81 (1998), pp.
4541–4544.

[26] D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S.
Inouye, S. Gupta, D.E. Pritchard, and W. Ketterle,
Excitation of phonons in a Bose–Einstein condensate by
light scattering, Phys. Rev. Lett. 83 (1999), pp. 2876–2879.

[27] D.C. Roberts, T. Gasenzer, and K. Burnett, Exciting
relative number squeezed particles from condensates using
stimulated light scattering, J. Phys. B 35 (2002), pp.
L113–L118.

[28] S.K. Lamoreaux, The Casimir force: background,
experiments, and applications, Rep. Prog. Phys. 68
(2005), pp. 201–236.

[29] S.K. Lamoreaux, Phys. Today, February (2007), p. 40.
[30] G.E. Volovik, The Universe in a Helium Droplet, Oxford

University Press, Oxford, 2003.
[31] D.C. Roberts and Y. Pomeau, Casimir friction II:

Casimir effect and drag in zero temperature superfluids,
preprint (2005). Available at arXiv:cond-mat/0503757.

[32] D.C. Roberts and Y. Pomeau, Casimir-like force arising
from quantum fluctuations in a slow-moving dilute Bose–
Einstein condensate, Phys. Rev. Lett. 95 (2005), 145303.

[33] Y. Castin and R. Dum, Low-temperature Bose–Einstein
condensates in time-dependent traps: beyond the U(1)
symmetry-breaking approach, Phys. Rev. A 57 (1998), pp.
3008–3021.

[34] S. Morgan, Response of Bose–Einstein condensates to
external perturbations at finite temperature, Phys. Rev. A
69 (2004), 023609.

[35] D.C. Roberts, Force on a moving point impurity due to
quantum fluctuations in a Bose–Einstein condensate,
Phys. Rev. A. 74 (2006), 013613.

[36] A. Sykes, M.J. Davis, and D.C. Roberts, preprint.
http://arXiv.0904.0995.

[37] J.D. Reppy and D. Depatie, Persistent currents in super-
fluid helium, Phys. Rev. Lett. 12 (1964), pp. 187–189.

[38] K. Helmerson, M.F. Andersen, C. Ryu, P. Clad, V.
Natarajan, A. Vaziric, and W.D. Phillips, Generating
persistent currents states of atoms using orbital angular
momentum of photons, Nucl. Phys. A 790 (2007), pp.
705–712.

[39] C. Ryu, M.F. Andersen, P. Clade, V. Natarajan, K.
Helmerson, and W.D. Phillips, Observation of persistent
flow of a Bose–Einstein condensate in a toroidal trap,
Phys. Rev. Lett. 99 (2007), 260401.

[40] D.C. Roberts, Probing temperature and damping rates in
Bose–Einstein condensates through dephasing in electro-
magnetically induced transparency conditions, Phys. Rev.
A 72 (2005), 065602 and references therein.

[41] E.L. Andronikashvili, Direct observation of two types of
motion in helium II, Zh. Eksp. Theor. Fiz. 16 (1946), pp.
780–785; J. Phys. USSR 109 (1946), pp. 201–206.

Contemporary Physics 461

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
s
 
A
l
a
m
o
s
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
1
6
:
3
4
 
8
 
M
a
r
c
h
 
2
0
1
0

http://cnls.lanl.gov/~dcr/
http://arXiv.0904.0995

